

Practice and Problem Solving

Practice by Example

State the property or properties used to rewrite each expression.

Example 1

$$1. \log 4 + \log 5 = \log 20$$

$$2. \log_3 32 - \log_3 8 = \log_3 4$$

$$3. \log z^2 = 2 \log z$$

4.
$$\log_6 \sqrt[n]{x^p} = \frac{p}{n} \log_6 x$$

5.
$$8 \log 2 - 2 \log 8 = \log 4$$

6.
$$\log \sqrt[3]{3x} = \frac{1}{3} \log 3x$$

7.
$$3 \log_4 5 - 3 \log_4 3 = \log_4 \left(\frac{5}{3}\right)^3$$
 8. $2 \log w + 4 \log z = \log w^2 z^4$

8.
$$2 \log w + 4 \log z = \log w^2 z^4$$

9.
$$2 \log_2 m - 4 \log_2 n = \log_2 \frac{m^2}{n^4}$$

10.
$$\log_b \frac{1}{8} + 3 \log_b 4 = \log_b 8$$

Example 2 (page 447)

Write each logarithmic expression as a single logarithm.

11. $\log 7 + \log 2$

12.
$$\log_2 9 - \log_2 3$$

13.
$$5 \log 3 + \log 4$$

14.
$$\log 8 - 2 \log 6 + \log 3$$

15.
$$4 \log m - \log n$$

16.
$$\log 5 - k \log 2$$

17.
$$\log_6 5 + \log_6 x$$

18.
$$\log_7 x + \log_7 y - \log_7 z$$

Example 3 (page 447)

Expand each logarithm.

21.
$$\log_{4} 5\sqrt{x}$$

22.
$$\log 3m^4n^{-2}$$

19. $\log x^3 v^5$

23.
$$\log_5 \frac{r}{s}$$

24.
$$\log_3 (2x)^2$$

25.
$$\log_3 7(2x-3)^2$$
 26. $\log \frac{a^2b^3}{c^4}$

26.
$$\log \frac{a^2b^3}{c^4}$$

27.
$$\log \sqrt{\frac{2x}{y}}$$

28.
$$\log_8 8\sqrt{3a^5}$$

29.
$$\log \frac{s\sqrt{7}}{t^2}$$

30.
$$\log_{h} \frac{1}{x}$$

Example 4 (page 448)

- 31. One brand of ear plugs claims to block the sound of snoring as loud as 22 dB. A second brand claims to block snoring that is eight times as intense. If the claims are true, for how many more decibels is the second brand effective?
- 32. A sound barrier along a highway reduced the intensity of the noise reaching a community by 95%. By how many decibels was the noise reduced?

Apply Your Skills

Use the properties of logarithms to evaluate each expression.

33.
$$\log_2 4 - \log_2 16$$

34.
$$3 \log_2 2 - \log_2 4$$

34.
$$3 \log_2 2 - \log_2 4$$
 35. $\log_3 3 + 5 \log_3 3$

36.
$$\log 1 + \log 100$$

37.
$$\log_6 4 + \log_6 9$$

37.
$$\log_6 4 + \log_6 9$$
 38. $2 \log_8 4 - \frac{1}{3} \log_8 8$

39.
$$2 \log_3 3 - \log_3 3$$

40.
$$\frac{1}{2} \log_5 1 - 2 \log_5 5$$
 41. $\log_9 \frac{1}{3} + 3 \log_9 3$

41.
$$\log_9 \frac{1}{3} + 3 \log_9 3$$

42. Error Analysis Explain why the expansion below of $\log_4 \sqrt{\frac{t}{s}}$ is incorrect. Then do the expansion correctly.

$$\log_4 \sqrt{\frac{t}{s}} = \frac{1}{2} \log_4 \frac{t}{s}$$
$$= \frac{1}{2} \log_4 t - \log_4 s$$

43. Open-Ended Write log 150 as a sum or difference of two logarithms.

Assume that $\log 4 \approx 0.6021$, $\log 5 \approx 0.6990$, and $\log 6 \approx 0.7782$. Use the properties of logarithms to evaluate each expression. Do not use your calculator.

50.
$$\log \frac{1}{4}$$

51.
$$\log \frac{1}{25}$$

53.
$$\log \frac{1}{6}$$

55.
$$\log \sqrt{5}$$

56. Noise Control New components reduce the sound intensity of a certain model of vacuum cleaner from 10^{-4} W/m² to 6.31×10^{-6} W/m². By how many decibels do these new components reduce the vacuum cleaner's loudness?

57. Reasoning If $\log x = 5$, what is the value of $\frac{1}{x}$?

Write true or false for each statement. Justify your answer.

58.
$$\log_2 4 + \log_2 8 = 5$$

59.
$$\log_3 \frac{3}{2} = \frac{1}{2} \log_3 3$$

60.
$$\log_3 8 = 3 \log_3 2$$

61.
$$\log_5 16 - \log 2 = \log_5 8$$

62.
$$\log (x - 2) = \frac{\log x}{\log 2}$$

$$63. \frac{\log_b x}{\log_b y} = \log_b \frac{x}{y}$$

$$64. (\log x)^2 = \log x^2$$

65.
$$\log_4 7 - \log_4 3 = \log_4 4$$

66.
$$\log x + \log(x^2 + 2) = \log(x^3 + 2x)$$
 67. $\log_2 3 + \log_3 2 = \log_6 6$

67.
$$\log_2 3 + \log_3 2 = \log_6 6$$

68.
$$\log_2 x - 4 \log_2 y = \log_2 \frac{x}{y^4}$$

69.
$$\log_b \frac{1}{8} + 3 \log_b 4 = \log_b 8$$

70. Construction Suppose you are the supervisor on a road construction job. Your team is blasting rock to make way for a roadbed. One explosion has an intensity of 1.65 \times 10⁻² W/m². What is the loudness of the sound in decibels? (Use $I_0 = 10^{-12} \,\text{W/m}^2$.)

71. Critical Thinking Can you expand $log_3(2x + 1)$? Explain.

72. Writing Explain why $\log (5 \cdot 2) \neq \log 5 \cdot \log 2$.

Write each logarithmic expression as a single logarithm.

73.
$$\frac{1}{4} \log_3 2 + \frac{1}{4} \log_3 x$$

74.
$$\frac{1}{2}(\log_x 4 + \log_x y) - 3\log_x z$$

75.
$$2 \log 3 - \frac{1}{2} \log 4 + \frac{1}{2} \log 9$$

75.
$$2 \log 3 - \frac{1}{2} \log 4 + \frac{1}{2} \log 9$$
 76. $x \log_4 m + \frac{1}{y} \log_4 n - \log_4 p$

77.
$$\left(\frac{2\log_b x}{3} + \frac{3\log_b y}{4}\right) - 5\log_b z$$
 78. $\frac{\log z - \log 3}{4} - 5\frac{\log x}{2}$

78.
$$\frac{\log z - \log 3}{4} - 5 \frac{\log x}{2}$$

Expand each logarithm.

79.
$$\log\left(\frac{2\sqrt{x}}{5}\right)^3$$

80.
$$\log \frac{m^3}{n^4 p^{-2}}$$
 81. $\log 2 \sqrt{\frac{4r}{s^2}}$

81.
$$\log 2 \sqrt{\frac{4r}{s^2}}$$

82.
$$\log_b \frac{\sqrt{x} \sqrt[3]{y^2}}{\sqrt[5]{z^2}}$$
 83. $\log_4 \frac{\sqrt{x^5 y^7}}{z w^4}$ **84.** $\log \frac{\sqrt{x^2 - 4}}{(x + 3)^2}$

83.
$$\log_4 \frac{\sqrt{x^5 y^7}}{z w^4}$$

84.
$$\log \frac{\sqrt{x^2-4}}{(x+3)^2}$$

85.
$$\log \sqrt{\frac{x\sqrt{2}}{y^2}}$$

86.
$$\log_3 \left[(xy)^{\frac{1}{3}} \div z^2 \right]^3$$
 87. $\log_7 \frac{\sqrt{r+9}}{s^2 r_1^{\frac{1}{3}}}$

87.
$$\log_7 \frac{\sqrt{r+9}}{s^2 t^{\frac{1}{3}}}$$